
Developing a more affordable open source digital
synthesizer with the ESP32
Elizabeth Levin
January 2024

Table of Contents
Abstract.. 2
Background..2
Criteria.. 2
Design...3

Physical Design... 3
Program Architecture...4

Development.. 5
Oscillators and Waveforms.. 5

Square Wave... 6
Triangle Wave.. 6
Sawtooth Wave..8
Sine Wave..8

Pitch Bend and Modulation..9
USB MIDI...13
Polyphony.. 14
Envelope..15

Results..17
Future Work..18
Appendices.. 19

Appendix A: Detailed Wiring Diagrams..19
A.1 LCD Wiring.. 19
A.2 Encoder Wiring..20
A.3 USB Host Shield 2.0 Wiring...21
A.4 Button Wiring...22
A.5 Speaker Wiring..23
A.6 Softpot Membrane Potentiometer Wiring.. 24

Appendix B: Bill Of Materials... 25
Appendix C: Repository... 26

References... 26

1

Abstract
Physical musical synthesizers are often expensive, with entry level equipment costing a minimum of 100
dollars, which can be a steep entry point for beginners. In an effort to both make a cheaper hardware
alternative, and to learn more about digital synthesis technology, I have developed an open source digital
synthesizer for under 50 dollars. In this paper, I document the development process of this synthesizer, as
well as leave resources for the reader to create their own version at home.

Background

Electronic synthesizers were first invented in 1964 simultaneously by Bob Moog and Don Buchla. These
first synthesizers were analog synthesizers, using physical hardware and circuitry to create sounds and
filters. (Deckert, 2024). Naturally, these synthesizers were often large and expensive. Today however, the
invention of digital computers and microprocessors has allowed synthesizers to enter the digital world,
with the first commercially available digital synthesizer being the Synclavier in 1975 (Deckert, 2024).
Digital hardware allows for lighter weight and more versatile devices, since the chip can be programmed
for many different types of operations. Additionally, digital hardware allows for the ability of saving
preset parameters. However, even with the rapidly advancing technology, digital synthesizers remain
relatively expensive. Entry level digital synthesizers cost a minimum of 100 dollars, which is not always
accessible to beginners. I was inspired to create this device when I was deterred from buying a digital
musical instrument due to the high price tag.

Criteria
I have set 5 criteria for this digital synthesizer:

1.​ Generate the 4 classic Synthesis waves: Sine, Square, Triangle, and Sawtooth
2.​ Have Polyphonic abilities (play multiple notes at once)
3.​ Generate Sound Envelope
4.​ Ability to connect to an external MIDI controller
5.​ Maintain a total cost of under 50 dollars

These criteria will provide necessary parameters in order to be playable and provide the user with enough
flexibility to create different sounds.

2

Design

Physical Design

The design is meant to be light weight and user friendly. It is inspired by the design of the Nintendo
Gameboy, as it captures the nostalgic 8-bit aesthetic reflected by the sounds produced by the synthesizer.
There are 4 rotary encoders, used for adjusting sound parameters on the screen. The display is a 20x4
Character LCD with I2C interface. 5 buttons are included to the side of the display for navigation of the
UI, however currently only the left and right buttons are in use for switching pages on the display. A
150mm soft membrane potentiometer is included at the bottom of the device. It can be used to slide notes
up and down, or to play notes when there is no keyboard connected. A volume potentiometer is included
to control the output level of the speaker. On the right side of the device is a USB port for connecting a
MIDI controller, and underneath is a USB cable for connecting the device to power or to a computer for
programming.

Figure 1: Synthesizer Housing Drawings

3

Figure 2: Wiring Schematic

Additional Wiring Diagrams with further details are provided in appendix A.

Program Architecture
In this Synthesizer, I run all audio synthesis and UI control on core 1 of the ESP32. On core 0, I handle
USB communications with the MIDI Keyboard. Upon receiving a packet from the keyboard, the data is
stored in a shared buffer, that is then accessed and interpreted by the process on core 1.

An interrupt timer runs continuously at a frequency of roughly 22khz (45 microsecond sampling time). In
the ISR, the DAC output is updated and a flag is raised for the next calculation. Within the main loop, the
next DAC output is calculated when the flag is raised, and upon finishing calculations, the flag is lowered
until the ISR runs again. During Calculations, the current time is incremented by 45 (the sampling period)
for all active oscillators. The MIDI queue is checked for new information, and interpreted. Upon the keys
being pressed, the keys are assigned to currently inactive oscillators. The global pitch bend and
modulation depth is also updated. The amplitude of the active oscillators is adjusted by the envelope, and
the phase shift counter is adjusted by the Low frequency Oscillator to modulate the frequency of the
output wave. After all of these parameters are calculated, they are used to calculate the output of the
wave. After the outputs of all of the active Oscillators are calculated, they are fed into a volume mixer,
where they are put together into a single output. This value is fed through the on board 8-bit DAC, and
output to the speaker.

4

Development

Oscillators and Waveforms
The first step in subtractive synthesis is to generate a base waveform by using an Oscillator. In the analog
world, synthesizers consisted of physical voltage controlled Oscillators to generate a waveform (Deckert,
2024). In my digital representation, I have a data structure that holds the amplitude, frequency, duty cycle,
current time from key press, and waveform of the wave I want to generate. I also include other
information like a shift counter for modulation (which I will cover in the modulation section), the
calculated output of the waveform, and the key number being pressed.

typedef struct{

 int freq;

 u_int8_t amp;

 float duty;

 int currentTime;

 wave waveform;

 float shiftCounter;

 noteState state;

 int output;

 int key;

} Oscillator;

Figure 3: Oscillator Structure Definition

Although there are many waveforms that could be used for this project, I am using the 4 basic wave forms
of Sine, Square, Triangle, and Sawtooth. These 4 waveforms were commonly used in early subtractive
synthesizers, as they were simple and gave a good amount of variety in sound (Hass, 2023). I will now
cover the calculations for each wave.

5

Square Wave
The square wave is the most simple of the 4 waves used in this project. The wave is pulled high (to the
amplitude) for a certain percentage of the cycle, and pulled low (to 0) for the rest of the cycle. This
repeated immediate switching of the output from low to high creates a square like shape in the waveform.

Figure 4: Square Wave (Alonso, 2016)

The amount of time that the output stays at high is represented by the duty cycle. At a duty cycle of 0.5,
the wave spends half of the time at high, and the other half at low. Setting the cycle to 0.2 will cause the
wave to spend a 5th of the cycle at high, and the rest of the cycle at low.

Triangle Wave
The triangle wave is a simplified representation of the sine wave, where the function linearly approaches
and moves away from the amplitude.

Figure 5: Triangle Wave (Alonso, 2016)

It can be calculated using 2 lines. The first line starts at 0 and ends at the amplitude. The second line starts
at the amplitude and ends at 0.

In a cycle, the function should reach the amplitude at half the period length. This creates the function:

 𝑦 = 𝐴
0.5 • 𝑃 𝑥

Where is the output, is the amplitude, is the period, and is the current time within the period. 𝑦 𝐴 𝑃 𝑥

For the second half of the cycle, the line should head in the opposite direction from the amplitude to 0.
This means that the slope will be:

6

- 𝐴
0.5 • 𝑃

To find the Y intercept, we plug in the point (0.5P,A) into the equation

 𝑦 = − 𝐴
0.5 • 𝑃 𝑥 + 𝑏

Where b is the y intercept.

 𝐴 = − 𝐴
0.5 • 𝑃 (0. 5 • 𝑃) + 𝑏

 𝐴 = − 𝐴 + 𝑏
 𝑏 = 2𝐴

Thus the equation is:

 𝑦 = − 𝐴
0.5 • 𝑃 𝑥 + 2𝐴

Putting the two together creates the mathematical expression

 𝑦 =
𝑦 = −𝐴

0.5 • 𝑃 𝑥 +2𝐴 𝑥>0.5𝑃

𝑦 = 𝐴
0.5 • 𝑃 𝑥 𝑥 ≤ 0.5𝑃 ⎰

⎱
⎱
⎰

7

Sawtooth Wave
The sawtooth wave consists of a linear function that starts at 0 and ends at the amplitude for each cycle.
This creates a rather buzzy effect in the sound.

Figure 6: Sawtooth Wave (Alonso, 2016)

To recreate this wave, I simply use 1 linear function to go from 0 to the amplitude.

 𝑦 = 𝐴
 𝑃 𝑥

Where y is the output, A is the amplitude, P is the period, and x is the point in the cycle. Since the output
resets back to the amplitude every cycle, the waveform creates the vertical line between cycles.

Sine Wave
The sinewave is considered the purest waveform. It only carries one harmonic, which is that of the
frequency. In order to generate the sine wave, I chose to use Arduino’s sine wave function, which uses the
standard GNU Math library. Another option would be to pre-generate a sine table, and use that to get the
sine values for the function. However, upon performing a performance test by timing both functions in
microseconds, both functions inconsistently returned either 0 or 1 microseconds. This signifies that both
operations take under a microsecond, and therefore the difference is insignificant. Thus, I chose to use
Arduino’s sine function, as it yields more accurate results.

Figure 7: Sine Wave (Alonso, 2016)

8

The typical equation for a sine wave would be Asin(fx). However, the sin function uses radians, so to
convert from degrees, I multiply the frequency by 6.28 (2pi). Additionally, A typical sine function will go
both above and below 0, but the DAC does not accept negative outputs. Therefore, I perform a vertical
shift of half the amplitude, and also multiply the sin by half the amplitude. This makes it so that the peak
of the sine wave is at the amplitude, and the lowest point of the sine wave is 0.

Equation:

 𝑦 = 𝐴
2 𝑠𝑖𝑛(2π𝑓𝑥) + 𝐴

2

Pitch Bend and Modulation
When a single note is fluidly changed in frequency, it is called a pitch bend. The pitch bend on a keyboard
can either be positive or negative, with a positive pitch bend increasing the notes frequency, and a
negative pitch bend decreasing its frequency. If the pitch bend is repeatedly moved up and down, it would
result in frequency modulation of the note. Frequency modulation has a carrier wave (the original sound
wave of the note), and the modulating wave (the waveform determining the change in frequency at a
given time). Synthesizers produce a Low frequency oscillator (LFO) to control modulation of different
parameters of the sound wave. This includes pulse width, sound cutoff, and frequency. In this project, I
implemented an LFO to allow for frequency modulation of the note played.

Figure 8: Frequency Modulation Graph (Frequency Modulation)

9

In order to affect the frequency of a sound wave, one might assume that you simply take the calculated
output of the LFO, and add it to the frequency parameter of the carrier wave like this:

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴
𝑐
𝑠𝑖𝑛((𝐹

𝑐
+ 𝑚(𝑥))𝑥)

Where Ac is the carrier wave, m(x) is the modulator wave, and Fc is the original frequency of the carrier
wave.

This was my initial approach to this problem. However, it proved to be a naive approach. The issue
becomes the phase shifting of the 2 waves. When graphing 2 waves with a frequency difference of 1, their
relative phases start close to each other when closer to 0, but the phase begins to diverge between the two
over time.

Figure 9: Amplitude vs time of 2 waves with frequency difference of 1

When working on an order of microseconds, this phase shift becomes immediately apparent.

When discreetly changing from one sound wave (F(x)), and the other wave (F(x+1)), The dramatic
change in phase creates an audible “popping” sound in the output. Therefore the phase needs to be
adjusted before switching to the other frequency.

An increase in frequency can be thought of as an increase in the speed of playback of a waveform.
Therefore, to modify the frequency of a waveform, one can instead change the phase.

Every time I call the wave calculation function, I increase x (current time) by my sampling period, which
is currently 45 microseconds. If I were to add another 45 to x every time I ran the loop, without actually
waiting those extra 45 microseconds, I would simulate double the speed of the waveform, and would be
able to increase the frequency instantaneously while maintaining the phase of the wave .

10

The difference in speed from the carrier wave to the new wave is

(𝐹

𝑐
+𝑚(𝑥))

𝐹
𝑐

We would multiply this by the sampling period to get the new step size. Since the timer is already being
incremented by this value each time, we only need to add the difference, which would be

 = 𝑆
(𝐹

𝑐
+𝑚(𝑥))

𝐹
𝑐

− 𝑆 𝑆 * 𝑚(𝑥)
𝐹

𝑐

Where S is the sampling period. Modifying the channel’s timer could affect other parameters such as the
envelope. Therefore, I implemented a new variable tracking the phase shift of the carrier wave. Every
cycle we increment this phaseCounter by this equation, and calculate the sine wave as

) 𝐴
𝑐
 𝑠𝑖𝑛(𝐹

𝑐
(𝑥 + ϕ)

Where is the phase shift counter. ϕ
This logic also applies to the pitch bend, and we can add it on at the end for an extra increase or decrease
in the frequency.

This is the formula I applied within my program, writing it out like so:

void calculateWave(Oscillator &channel){

 //calculate modulo

 int modulo = int((waves[lfo.waveform])(lfo.freq,lfo.amp,lfo.duty,channel.currentTime));

 modulo -= (lfo.amp/2); // decrease modulo to be above and below 0

 modulo+=globalVals.pitchBend;

 //get phase shift for carrier wave

 float m = float((channel.freq + modulo))/channel.freq;

 channel.shiftCounter += (m*SAMPLING_PERIOD - SAMPLING_PERIOD);

 int newX = channel.currentTime + channel.shiftCounter;

 //calculate output

 channel.output = (waves[globalVals.waveform])(channel.freq,channel.amp,globalVals.duty,newX);

}

Figure 10: Code for Modulo Implementation

11

However, this can be taken further mathematically.
Since we increment the shift counter each loop with itself (+=), it can be represented mathematically by
integrating the equation.

 ϕ =
0

𝑥

∫
𝑆𝐴

𝑚
𝑠𝑖𝑛(𝐹

𝑚
𝑡)

𝐹
𝑐

𝑑𝑡

 ϕ = [
−𝑆𝐴

𝑚
𝑐𝑜𝑠(𝐹

𝑚
𝑡)

𝐹
𝑐
*𝐹

𝑚
]

0
𝑥𝑑𝑡

 ϕ =
−𝑆𝐴

𝑚
𝑐𝑜𝑠(𝐹

𝑚
𝑡)

𝐹
𝑐
*𝐹

𝑚

Plugging this back into the equation, we get

)) 𝐴
𝑐
𝑠𝑖𝑛(𝐹

𝑐
(𝑥 +

−𝑆𝐴
𝑚

𝑐𝑜𝑠(𝐹
𝑚

𝑥)

𝐹
𝑐
*𝐹

𝑚

 𝐴
𝑐
𝑠𝑖𝑛(𝐹

𝑐
𝑥 −

𝑆𝐴
𝑚

𝐹
𝑚

𝑐𝑜𝑠(𝐹
𝑚

𝑥))

This equation is very similar to the fundamental frequency modulation equation of sinusoidal waves,
which is

 𝐴
𝑐
 𝑐𝑜𝑠(𝐹

𝑐
𝑡 + 𝑚

𝑓
 𝑠𝑖𝑛 (𝐹

𝑚
𝑡))

Which can also be written as

 𝐴
𝑐
 𝑠𝑖𝑛(𝐹

𝑐
𝑡 − 𝑚

𝑓
 𝑐𝑜𝑠 (𝐹

𝑚
𝑡))

Where mf is the modulation index defined as Δf/fm (Frequency Modulation Fundamentals, 2024).

Δf is the instantaneous change in frequency multiplied by Am. The formula I derived reflects that, with the
sampling rate S being the instantaneous change in frequency.

12

USB MIDI

An important aspect of creating digital music is the ability to play the sounds you create. Modern
synthesizers expand the users ability to control the instruments by communicating with Musical
Instrument Digital Interface [MIDI] controllers. The development of this protocol was proposed in 1981,
when Dave Smith and Chet Woods published a paper published to the Audio Engineering Society about
their Universal Synthesizer Interface in 1981. After some changes were made to the proposed idea in
collaboration with some Japanese companies like Yamaha and Roland, the MIDI standard was finalized,
and the first commercially available instrument to include MIDI, the The Prophet 600 by SCI, was
shipped in 1983 (MIDI History Chapter 6-MIDI Begins, 2024).

The MIDI Protocol is a standardized communication protocol between audio devices. It works in the form
of events, where a midi controller will send an event, notifying a device like computer or synthesizer, that
an event has occurred. Events include a note being turned on or off, a dial being set to a specific position,
and other control changes (Summary of MIDI 1.0 Messages).

Each MIDI event typically consists of 3 bytes: 1 status byte and 2 data bytes. Any unused data bytes are
padded with zeros. The status byte consists of the event identifier (4 MSB) and the channel number (4
LSB). The two data bytes consist of data pertaining to the specific event (Summary of MIDI 1.0
Messages). For example: In a Note off event on channel 0, the status byte would be 10000000 (event ID
8, channel 0). For the data, data byte 1 represents the note number, and data byte 2 represents the velocity.
See Appendix C for a full table of Midi Event specifications.

Although there are many different Serial Communication methods that can be used to send MIDI, for this
project I have chosen to use USB, as it is fast and widely adopted by most MIDI controllers.

Figure 11: 32-bit USB-MIDI Event Packet Description (USB, 1999).

MIDI Events over USB are sent via 32-bit packets. The first byte holds the Cable Number (4 MSB) and
the Code Index Number (4 LSB). The Code Index Number re-iterates the event type that is then specified
in the first MIDI byte (USB,1999).

USB is a host driven protocol, so the ESP32 must be able to act as a USB host when communicating with
the controller. The ESP32 does not have native USB capabilities, so an external USB Host processor must
be added to the setup. In this project, I am using the Mini USB Host Shield 2.0. It is a board based on the
MAX3421E chip by Analog Devices. It is a USB Peripheral/Host Controller with an SPI Interface
(Analog Devices, 2013). The breakout board itself is poorly documented, but I was able to find the pins I
needed. See Appendix A.3 for the boards pinout.

13

A jumper is soldered between the Vbus pin and the chip's power. The chip runs off 3.3Volts while most
USB peripherals need 5V, so the jumper must be de-soldered or the trace from the bus pin to the chip
must be cut.

For this project, I used the USB Host Shield Library 2.0 for taking care of communication with the
MAX3421E and sending/handling USB packets.

In order to test the connection, I utilized the example program written by Yuuichi Akagawa, who was the
contributor of the USB MIDI functionalities in the library. The program continuously polls the midi
device for a new message, and returns the received data if there is a new midi message, printing it over
serial. This is where I discovered an interesting issue. Because of the delay caused by printing to serial,
the program does not poll the MIDI device as frequently, and MIDI packets would get dropped if there
were too many events in a short amount of time. This means that the controller is sensitive to the polling
rate, and the polling rate must remain consistently high to ensure the reception of all midi messages. I
would expect a slower polling rate to cause a delayed reception of event data, but not dropping data
completely.

To ensure the highest possible polling rates, I consistently poll the MIDI controller on a separate process,
adding received messages to a queue shared with the main process. If the two processes were to try to
access the queue at the same time, it could cause a collision. Thus, I use a mutex to manage access to the
critical section, that being the queue.

Polyphony

Classical Synthesizers are either Monophonic or Polyphonic. Monophonic synthesizers can only play one
note at a time. When pressing two notes at the same time on a Monophonic synthesizer, only the last note
pressed will be played. Polyphonic synthesizers, on the other hand, have multiple voices that can be
played at once. In analog synthesizers, the number of voices was limited to the number of hardware
oscillators in the hardware (Deckert, 2024). Digital Synthesizers on the other hand, are only limited by
their computational ability.

In order to manage multiple voices, I create an array of oscillators. Each oscillator begins in the
INACTIVE state. When a NOTE ON event is read from the MIDI Controller, the program iterates
through the array of oscillators to find the first inactive oscillator. That oscillator is then assigned to that
key, by setting the oscillator key number to the key number of the turned on note. The state of the
oscillator is then changed to ATTACKING, signifying that the note is in the attack stage of the envelope
(will touch on this further in the Envelope section). If another note is pressed while the first note is still
down, then another oscillator will be assigned to that key. When the note is released, the state of the note
is changed to RELEASING, signifying that the note is in the release stage of the envelope (will touch on
this further in the Envelope section). Once the note is finished releasing, the parameters of the oscillator
are reset, and the state of the oscillator is set to INACTIVE, unbinding the oscillator from the key. In my

14

current design, if the number of notes played at once goes over the number of oscillators, the last notes get
ignored.

When playing multiple notes together, an important thing to note is the combined volume of the notes. If
one note is being played at an amplitude of 255, playing multiple notes at the amplitude would put the
output to the dac above the 8 bit limit. Thus, the amplitude of the notes needs to be balanced. To do this, I
implement a volume mixer.

In this function, I check how many notes are playing at the same time. I leave a default amplitude of ¼ the
total maximum output of the dac for each note (255/4) so that up to 4 notes can be played at the same time
without modification to the overall volume.

If more than 4 notes are played at the same time, the volume of the notes is scaled, so that the amplitude
of all the notes combined add to 255. For example if a fifth note is turned on, the amplitude of the 4 notes
already being played will be scaled down from 255/4 to 255/5.

Envelope

The Audio envelope allows for the shaping of the amplitude of the wave when the note is pressed and
released. The volume can quickly increase and decrease, making a short and sharp sound. Or, the volume
could slowly increase and decrease, creating a much smoother and mellow note. The Attack Decay
Sustain Release (ADSR) Envelope generator was first introduced in the Moog Synthesizer, one of the first
Voltage controlled modular synthesizers, released in 1964 (Pinch, 2004). This envelope architecture is
still widely used to this day for musical synthesis. The ADSR envelope controls 4 parameters to shape the
amplitude of the output:

Attack: Length of time it takes for the wave to reach its maximum amplitude after being pressed
Decay: Amount of time it takes for the wave to come back down from the maximum amplitude to the
sustain amplitude
Sustain: Amplitude at which to hold the note
Release: Length of time it takes for the amplitude of the wave to decrease to 0 after the note is released.

Figure 12: Audio Envelope Graph (“Quick Guide to Envelopes”, 2022)

15

In order to incorporate these parameters into my synthesizer, I defined states within the Oscillator
structure to keep track of the current state of the note.

ATTACKING: State of note when key is pressed
DECAYING: State of note when attacking is finished
RELEASING: State of note when key is released
INACTIVE: State of note when releasing is finished

Figure 13: Envelope State Machine

In this project, I use a linear function for the change in amplitude over time, but other functions, such as
quadratic,are also used in music production.

The increase to the amplitude during attacking is

𝐴

𝑚𝑎𝑥
*𝑆

α*1000

Where is the maximum amplitude of the wave 𝐴
𝑚𝑎𝑥

S is the Sampling Rate in microseconds,
 is the Attack time in milliseconds. α

Similarly, the decrease to the amplitude while decaying is

16

𝐴

𝑚𝑎𝑥
*𝑆

β*1000

Where is the Decay time in milliseconds. β

For the Release however, the key may be released before the note has finished decaying. In order to keep
the length of time spent releasing consistent to the release value, I use an extra variable relTime, that
records the time the note was released. The equation is then:

𝐴

𝑟𝑒𝑙
*𝑆

ρ*1000

Where is the Release length in milliseconds, and is the recorded time at which the note was ρ 𝐴
𝑟𝑒𝑙

released.

One of these 3 functions will increment or decrement the Amplitude of the output wave every loop. To
avoid redundancy, the oscillator will stay in the decaying state while sustaining, and the function will only
decrement the amplitude if it is above the sustain value.

Results

The result is a fully functional 8 bit digital synthesizer. It generates the 4 basic waveforms, has polyphonic
functionality, uses an envelope generator, and can communicate over MIDI. Additionally, the total price
comes out to be $49.80, which is just under the price limit set out for this project.

Figure 14: Image of finished project

17

Future Work
If given more time, there are multiple features I would like to include or further develop, such as effects
like filters and echo, the addition of an external DAC for higher bit depth, and an SD card module for
storing preset parameters. An audio out port would also be a great addition, as it would allow to record the
sounds and play it through a higher quality speaker. Additionally, there are minor bugs that could be
ironed out with additional time. For example, the USB handler will occasionally drop a NOTE_OFF
message, making the note stay on after release. It is unclear why this happens, and needs more
experimentation. An Oscilloscope with USB interpretation capabilities may be helpful for diagnosing the
problem.

18

Appendices

Appendix A: Detailed Wiring Diagrams

A.1 LCD Wiring

 LCD VCC LCD GND LCD SCL LCD SDA

ESP Pin Vin/5V GND GPIO22 GPIO21

19

A.2 Encoder Wiring

 Encoder 1 Encoder 2 Encoder 3 Encoder 4

DT pin ESP GPIO4 ESP GPIO13 ESP GPIO15 ESP GPIO27

CLK pin ESP GPIO2 ESP GPIO12 ESP GPIO14 ESP GPIO26

20

A.3 USB Host Shield 2.0 Wiring

USB Host Pins ESP Pins

VCC 3.3V

INT GPIO17

SS GPIO5

21

MOSI GPIO23

MISO GPIO19

CLK GPIO18

MAX_RST 3.3V

GND GND

VBus Vin/5v

A.4 Button Wiring

 Button1 Button2 Button3 Button4 Button5 VCC GND

ESP Pin GPIO32 GPIO35 GPIO34 GPIO33 GPIO39 3.3v 10KΩ res to
GND

22

A.5 Speaker Wiring

Volume Potentiometer

Volume Pot VCC Volume Pot OUT Volume Pot GND

ESP GPIO 25 PAM8403 Rin ESP GND

PAM8403 Amplifier

Rin VCC GND R+ R- ⊥

Volume pot
OUT

ESP Vin/5v ESP GND Speaker+ Speaker- GND

23

A.6 Softpot Membrane Potentiometer Wiring

VCC GND DOUT

ESP 3.3V ESP GND ESP GPIO36 10KΩ res to
GND

24

Appendix B: Bill Of Materials

Part Manufacturer Specifications Part# Qty. Vendor Cost(ind.) Cost(total)

ESP32
devkit-V1

AiTrip

15363 1 Amazon $5.00 $5.00

I2C LCD
Screen

‎huyouming 20x4 LCD
Working voltage: 5V
ST7066U Controller
Communication:I2C

B0D2LDJ3JY(
ASIN)

1 Amazon $9.99 $9.99

Potentio
meter

‎ Taiss 10kohm ‎B0B3126K2M 1 Amazon 10 for
$8.66,​
1 for $0.86

$0.86

Speaker Dweii Impedance: 8 ohm
Output: 3w

70171551967
1

1 Amazon 4 for $9.99,
1 for $2.49

$2.49

Rotary
Encoder

WWZMDiB EC11 4 Amazon 6 for $8.88,
1 for $1.48

$5.92

Softpot
Potentio
meter

Spectra
Symbol

150mm
Linearity: +-3%

 1 spectrasy
mbol.com

$14.58 $14.58

PAM8403
Amplifier

EPLZON Max Voltage: 5.5V
Min Voltage: 2.5V
2 channel 3w output

 1 Amazon 10 for
$9.99,
1 for $0.99

$0.99

Mini USB
Host
Shield
2.0

 Working Voltage:
3.3V

 1 AliExpres
s

$4.79 $4.79

10k ohm
Resistors

TE
Connectivity
Passive
Product

 CFR100J10K 6 DigiKey $0.28 $1.68

Push
Button
7mm

​
uxcell

 a11111400ux0
132

5 Amazon 10 for
$7.01, 1 for
$0.70

$3.50

25

Appendix C: Repository
Repository: https://github.com/TheSeaUrchin/Pixis-Slide

References
Alonso, Gabino. “LTSPICE: Generating Triangular & Sawtooth Waveforms.” LTspice: Generating
Triangular & Sawtooth Waveforms | Analog Devices, Analog Devices, Mar. 2016.

Analog Devices, ‘MAX3421E: USB Peripheral/Host Controller with SPI Interface Data Sheet (Rev.4)’,
Jul. 2013.

Deckert, C. (2024). Good Vibrations from Electronic Circuits: The Technological Development of the
Synthesizer.

“Frequency Modulation Fundamentals - Mini-Circuits Blog.” Mini, 8 Mar. 2024.

“Frequency Modulation: Theory, Time Domain, Frequency Domain: Radio Frequency Modulation:
Electronics Textbook.” All About Circuits.

Hass, Jeffery. “Synthesis Chapter Four: Waveforms” Introduction to Computer Music, Indiana University

“MIDI History Chapter 6-MIDI Begins 1981-1983.” MIDI.Org, MIDI Association, Nov. 2024.

Pinch, T., & Trocco, F. (2004). Analog days: The invention and impact of the Moog synthesizer. Harvard
University Press.

“Quick Guide to Envelopes.” Making Music, 3 Apr. 2022.

“Summary of MIDI 1.0 Messages.” MIDI.Org, MIDI Association, Feb. 2024.

USB, ‘Universal Serial Bus Device Class Definition for MIDI Devices (Release 1.0)’, Nov. 1999.

26

https://github.com/TheSeaUrchin/Pixis-Slide

	Developing a more affordable open source digital synthesizer with the ESP32
	
	Table of Contents
	Abstract
	Background
	Criteria
	Design
	Physical Design

	
	Program Architecture

	Development
	Oscillators and Waveforms
	
	
	Square Wave
	Triangle Wave
	
	
	Sawtooth Wave
	Sine Wave

	Pitch Bend and Modulation
	USB MIDI
	Polyphony
	Envelope
	𝐴𝑚𝑎𝑥*𝑆α*1000
	𝐴𝑚𝑎𝑥*𝑆β*1000
	𝐴𝑟𝑒𝑙*𝑆ρ*1000

	Results
	Future Work
	
	
	
	
	Appendices
	Appendix A: Detailed Wiring Diagrams
	A.1 LCD Wiring
	A.2 Encoder Wiring
	A.3 USB Host Shield 2.0 Wiring
	A.4 Button Wiring
	A.5 Speaker Wiring
	A.6 Softpot Membrane Potentiometer Wiring

	Appendix B: Bill Of Materials
	Appendix C: Repository

	
	References

